Цены и наличие товара Вы можете уточнить здесь

Alcom ADR-3128 >>
CENIX VR-402 >>
CENIX VR-880 >>
CENIX VR-P20 >>
CENIX VR-P200 (с фотокамерой на 250 кадров) >>
CENIX VR-P400 (с фотокамерой на 250 кадров) >>
CENIX VR-P50 >>
CENIX VR-P630 >>
CENIX VR-P800 (с фотокамерой на 250 кадров) >>
CENIX VR-P90 >>
DIASONIC DDR-1016 >>
SAFA IRC 220 >>
SAFA IRS 1000 >>
SAFA IRS 2000 >>
SAMSUNG P700 >>


Alcom

ADR-3128


adr_3128

  • Высококачественное воспроизведение МРЗ и WMA файлов
  • Многофункциональный ЖКД с синей подсветкой
  • USB 1.1 интерфейс
  • Беспроводный выносной радиомикрофон позволяет вести запись, находясь с диктофоном на расстоянии от источника звука
  • 5 типов эквалайзера (Нормальное звучание, Рок, Поп, Классика и Живое звучание)
  • Система автоматической записи ARS-2
    режим А: запись происходит в один файл, не записывая пауз
    режим В: паузы также не записываются, но при автоматическом включении после паузы записьпроизводится в новый файл
  • Функция REALTIME STOP позволяет вернуться к сохраненному месту в записи и начать прослушивание с того места, на котором оно было закончено в прошлый раз
  • 396 сообщений в памяти и 4 файла (99 сообщений в каждом файле)
  • Функция будильника, воспроизведения и записи по таймеру: может быть установлен звук или сообщение, которое будет проигрываться автоматически в заданное время, чтобы предупредить вас о событии, дать информацию, может принимать и записывать трансляции, разговоры автоматически ежедневно, еженедельно, ежемесячно
  • Питание выключается автоматически после 1 минуты без заданий
  • Удобный поиск нужных сообщений
  • Управление скоростью воспроизведения (медленная/нормальная/быстрая)
  • Позволяет прослушивать сообщения в наушниках во время записи

     

     

     

    Время записи
      Режим Супер высококачественной записи,мин Режим высококачественной записи,мин Режим нормальной записи,мин
    32MB 280 540 650
    64MB 580 1070 1330
    128MB 1180 2160 2710
    256MB 2350 4300 5400
    Спецификации
    FM приемник 87,5-108 МГц
    выходная мощность макс 80мВт (громкоговоритель 8Ом) мин 50мВт (наушники 16Ом)
    частотная характеристика 20Гц-2ОкГц (МРЗ) З00Гц-4кГц (диктофон)
    питание AAA (LR03)x 2EA, 16 часов работы; гнездо DC подзарядки ЗВ 200мА
    объем памяти 32МБ, 64МБ, 128МБ и 256МБ
    интерфейс ПК центральный процессор не менее 200МГц, виртуальный диск не менее 64МБ, 20МБ свободного места, ОС Windows 98SE, МЕ, 2000, ХР

    CENIX

    VR-402


    VR-402 Время записи (мин): SP - 118
    LP - 238
    Количество записей: 199
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 25 х 125 х 15,5 мм
    Вес без батарей: 33 гр.


    VR-880


    VR-880 Время записи (мин): SP - 232
    LP - 504
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 26 х 17 х 123,5 мм
    Вес без батарей: 38 гр.


    VR-P20


    VR-P20 Время записи (мин): SP - 130
    HQ - 30
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 х 104 х 17 мм
    Вес без батарей: 38 гр.


    VR-P200 (с фотокамерой на 250 кадров)


    VR-P200 Время записи (мин): HQ - 30
    SP - 130
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P400 (с фотокамерой на 250 кадров)


    VR-P400 Время записи (мин): HQ - 65
    SP - 270
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P50


    VR-P50 Время записи (мин): SP - 270
    HQ - 65
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 х 104 х 17 мм
    Вес без батарей: 38 гр.


    VR-P630


    VR-P630 Время записи (мин): SP - 400
    LP - 400
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 42,5 x 13,7 х 99,8 мм
    Вес без батарей: 38гр.


    VR-P800 (с фотокамерой на 250 кадров)


    VR-P800 Время записи (мин): HQ - 134
    SP - 548
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P90


    VR-P90 Время записи (мин): SP - 548
    HQ - 134
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.



    DIASONIC

    DDR-1016


    DDR-1016 Время записи (мин): SP - 258
    LP - 562
    Количество записей: 4 банка по99
    Диапазон записываемых частот: 500 Hz - 3200 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 25 x 125 х 15,5 мм
    Вес без батарей: 33 гр.


    SAFA

    IRC 220


    SAFA IRC 220 Время записи (мин): HQ - 70
    SP - 140
    Количество записей: 207
    Диапазон записываемых частот: HQ 300 Hz - 8000 Hz
    SP 300 Hz - 3500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 100 x 45 х 13 мм
    Вес без батарей: 45 гр.


    IRS 1000


    SAFA IRS 1000 Время записи (мин): 570
    Количество записей: 199
    Диапазон записываемых частот:

    300 Hz -3500 Hz

    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 31 x 116 х 14 мм
    Вес без батарей: 36 гр.


    IRS 2000


    SAFA IRS 2000 Время записи (мин): 1160
    Количество записей: 199
    Диапазон записываемых частот:

    300 Hz -3500 Hz

    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 31 x 116 х 14 мм
    Вес без батарей: 36 гр.


    SAMSUNG

    Samsung P700


    Samsung P700 Время записи (мин): SP - 35
    LP - 70
    Количество записей: 99
    Диапазон записываемых частот: 500 Hz - 4000 Hz
    Порт для перезаписи на ПК: Неть
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Нет
    Габариты: 18 x 148 мм
    Вес без батарей: 31 гр.
Что такое радиоволны
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, злучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.
Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается как отношение скорости света взятой в метрах к частоте электромагнитного излучения взятой в МГц.
Такое соотношение показывает, например, что на частоте 1 МГц длина волны составляет 300 метров.
С увеличением частоты длина волны уменьшается, с уменьшением частоты длина волны увеличивается. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.
Как распространяются радиоволны:
Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном менялись волны от 1 до 30 км.
Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.
Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.
Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.
Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

Информация взята из сайта http://www.lr.kiev.ua