Официальный дистрибьютор Barrett Communications (Австралия) в Украине ТОВ “КОНЦЕРН АЛЕКС”
Представляем Вашему вниманию оборудование австралийской фирмы Barrett Communications Pty. Ltd., известной во всем мире как производитель надежного радиооборудования КВ и УКВ диапазона, армейского и гражданского назначения.
Отличительной чертой продукции Barrett является законченность системных решений на основе своих радиостанций. В настоящее время реализованы автоматические системы дистанционного управления трансивером, выхода по КВ-каналу в телефонную сеть, передачи данных, факсимильных сообщений, электронной почты, подключения к сети Интернет, передачи графического изображения, текстов, файлов и т.п.
Barret communications
|
Опции
|
|
|
|
|
|
|
|
|
|
|
|
|
BARRETT PRC-2080 Тактическая УКВ радиосистема
BARRETT 2063 КВ-УКВ шлюз
BARRETT PRC-2090 Тактическая КВ радиосистема
BARRETT PRC-2064 Тактический голосовой шлюз
HF Tactical antennas
Rapid deployment wire dipole antenna - 125 W |
Operates from 2 to 30 MHz - 125 W PEP max. Frequency markers attached to Kevlar radiators. Includes:- - Lanyards wound on reusable spools with throw and securing weights - 10 metres of RG-58AU coaxial cable, with waterproof BNC and UHF coaxial connectors - Carry bag - colour black |
 |
Rapid deployment broadband dipole antenna - 125 W |
Operates from 2 to 30 MHz without adjustment - 125 W PEP max. Can be deployed as full length broadband dipole or in compact form. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Radiators and loads wound on reusable spools - Lanyards wound on reusable spools with throw and securing weights - 10 metres of RG-58AU coaxial cable, with waterproof BNC and UHF coaxial connectors - Carry bag - colour black |
 |
Rapid deployment mast |
Portable 5m mast kit for tactical broadbands and dipoles - rapid deployment. Includes:- - 7 piece mast - Guys on winders, earth pegs, guy pegs and hammer - Carry bag - colour black |
 |
Tape whip - 1.5 metre |
For manpack operation in receive mode (for transmission from 5 to 30 MHz but at limited efficiency). |
 |
Long wire throw out antenna |
For manpack operation with an adaptor to suit the whip stud on PRC-2090. Includes:- - Winding hub, antenna wire and throw weight - Carry bag - colour black |
 |
Collapsible whip 3 metres |
For manpack operation with gooseneck - colour black. |
 |
Counterpoise earth kit - multi-wire |
Recommended to increase the efficiency of the PRC-2090 operating with whip antennas below 3 MHz when in dry soil or desert areas where normal earth connections are difficult to achieve. Includes:- - Winding hub, wire earth radials and weights - Carry bag - colour black |
 |
Counterpoise earth kit - single wire |
Recommended to increase the efficiency of the PRC-2090 operating with whip antennas below 3 MHz. Includes:- - Winding hub, wire earth radial and peg - Carry bag - colour black |
 |
Whip adaptor to suit 2090 |
Complete whip adaptor to fit 2090 manpack. |
|
Barrett 2019 MIL-SPEC Automatic tuning HF mobile antenna - NATO green |
Features:- - Frequency range 2 to 30 MHz - Fast tuning - typically less than 2 seconds - Extremely robust technical plastic alloy radome - Two piece MIL-SPEC whip and spring - Immersible to 1 metre for 1 hour - Meets MIL-STD 810G Clause 516.5 for shock, Clause 501.4, 503.4 for temperature Clause 514.5 for vibration, Clause 510.4 for dust |
|
Includes:- - Barrett 2019 antenna - Interface cable 6 m - integral coaxial/control with connectors to suit 2090 vehicle docking station - Fibreglass split whip top section and bottom section - Tapered spring - black - Installation sheet |
 |
Stainless steel whip |
Single section stainless steel whip for the Barrett 2019 automatic tuning mobile antenna for NVIS operation. |
|
NVIS whips extension to suit Barrett 2019 automatic tuning mobile antenna |
Two whip sections complete with tie down harness to extend the whip on the Barrett 2019 automatic tuning mobile antenna for NVIS operation. The usable frequencies for NVIS communications are between 2 MHz and 15 MHz |
 |
Internal fit GPS receiver for 2019 antenna |
GPS receiver fitted inside the 2019 antenna, interfaces to the 2050 transceiver via the RF control cable supplied with 2019 antennas. |
 |
Adaptor plate to mount 2019 antenna |
Mount plate for mounting 2019 antenna on existing vehicle mounts with NATO 6 or 3 hole or USA 4 hole patterns. |
 |
2018 Mobile magnetic loop HF antenna |
Ideal for NVIS propagation or applications requiring constant coverage for distances of 0-1000km, the loop antenna provides significantly more gain than conventional whip antenna systems. Features:- - Frequency range 3.9 to 12.5 MHz - Fast tuning - typically less than 2 seconds - Meets MIL-STD 810G Clause 516.5 for shock, Clause 501.4, 503.4 for temperature Clause 514.5 for vibration, Clause 510.4 for dust - Packed size 2000 mm x 1300 mm x 200 mm Includes:- - Interface cable - integral coaxial/control and connectors - Operation and installation manual |
 |
Rapid deployment broadband dipole antenna - 125 W |
Operates from 2 to 30 MHz without adjustment - 125 W PEP max. Can be deployed as full length broadband dipole or in compact form. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Radiators and loads wound on reusable spools - Lanyards wound on reusable spools with throw and securing weights - 20 metres of RG-58AU coaxial cable, waterproof C32-21 UHF type connector coaxial - Carry bag - colour black |
 |
Rapid deployment wire dipole antenna - 125 W PEP |
Operates from 2 to 30 MHz with frequency lables to indicate tuned length. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Lanyards wound on reusable spools with throw and securing weights - 20 metres of RG-58AU coaxial cable, waterproof C32-21 UHF type connector coaxial - Carry bag - colour black |
 |
912 multi-wire broadband dipole (2 to 30 MHz) - 150 W PEP stainless steel |
Includes:- - 30 metres of RG-58AU coaxial cable with waterproof C32-21 type UHF coaxial connectors.
Note:- Masts supplied separately.
|
 |
10 metre lightweight, air transportable aluminium mast - nylon guys |
Suitable for rapid deployment of Barrett 912 broadband antennas or Barrett 915 series wire dipole. With Nylon guys and ground mounting. Packed length 2 metres, suitable for air-freight. Includes:- - Offset bracket and pulleys - Nylon guys, guy anchor pegs, pulleys and halyard - Installation instructions |
 |
10 metre lightweight, air transportable aluminium mast - stainless steel guys |
Suitable for rapid deployment of Barrett 912 125 W broadband antennas or Barrett 915 series wire dipoles. With Stainless Steel guys and ground mounting. Packed length 2 metres, suitable for air-freight. Includes:- - Offset bracket and pulleys - Stainless steel guys, guy anchor pegs, pulleys and halyard - Installation instructions |
 |
HF Tactical power options
HF Tactical general options
VHF Tactical antenna options
VHF Tactical general options
Tactical handset with keypad |
Tactical handset with waterproof Gore-tex® membranes and MIL-SPEC connector, speaker, microphone, Press-To-Talk (PTT) button and backlit control keypad for use with advanced software features such as Selcall, Groupcall, key entry and front panel programming. |
 |
Tactical handset |
Tactical handset with MIL-SPEC connector, speaker, microphone and Press-To-Talk (PTT) button. For use when functions available to the operator are to be limited. |
 |
Lightweight tactical headset (under helmet) |
2Lightweight Tactical Headset, suited to under helmet mounting, with MIL-SPEC connector, speaker, microphone on a gooseneck and clip on Press-To-Talk (PTT) button. |
 |
Interconnecting control cable 2.0m between 50 W VHF amplifier and vehicle docking station |
Required when 50 W VHF amplifier is mounted remotely from the Vehicle Docking Station. |
|
Coax cable 2.0m BNC to BNC vehicle docking station to 50 W VHF amplifier |
Required when 50 W VHF amplifier is mounted remotely from the Vehicle Docking Station. |
|
PRC-2080 Technical manual - on CD |
Detailed manual with schematics, circuit theory, fault diagnostics and maintenance procedure. |
|
Canvas backpack |
Canvas Backpack to suit the PRC-2080 VHF Tactical Handheld Package or VHF 5 W Tactical Transceiver with standard battery. The lightweight backpack design is suited to back mounting the transceiver (transceiver not included), mounting either a short or long antenna and is olive green in colour. |
 |
Framed backpack |
Framed back pack to suit PRC-2081. |
 |
Rugged external mount speaker |
External mount speaker for the PRC-2082 50 W VHF transceiver when used in a mobile, as a base or within a rebroadcast system. Includes mounting bracket
Note:- Cable part number 2080-10-31 is required to connect the speaker.
|
 |
VHF Speaker mounting bracket |
Speaker bracket for mounting the rugged external speaker to the vehicle docking station. |
 |
Cable speaker to PRC-2082 transceiver |
Cable to connect the rugged external mount speaker to the PRC-2082 50 W VHF amplifier when used in a mobile, as a base or within a rebroadcast system. |
 |
VHF Handset mounting bracket |
Bracket to mount handset to the PRC-2082 50 W VHF transceiver when used in a mobile, as a base or within a rebroadcast system. |
 |
Vehicle docking station for docking of PRC-2080 transceiver |
Vehicle docking station to connect PRC-2080 VHF transceiver to Vehicle/Base amplifier or direct to external VHF antenna. Provides DC supply, Audio/RS-232 and RF connections.
Note:- illustrated here with PRC-2080 docked - not supplied with unit.
|
 |
50 W VHF Amplifier |
30 - 88 MHz, provides 50 W power output. For PRC-2080 docked in vehicle docking station. Includes Aux Mic/Data Input connector. |
 |
Anti-vibration mount |
For mounting a Vehicle Docking Station into an armoured or other shock-heavy vehicle.
Note: includes transition plate.
|
 |
Transportation casing |
High impact polyester transportation casing. |
 |
Плагины Joomla
Радиоприемник - мир прекрасного
Открытия и изобретения живут не всегда долго. Одни забываются очень быстро, другим судьба дает долгую жизнь, пока новое открытие не перечеркнет или дополнит, а может, и поглотит его. Особое место в истории науки и техники занимает радиоприёмник и радиопередатчик, которые составляют основу системы радиосвязи. Появление "радиокондуктора Бранли" только способствовало появлению радиосвязи, но понадобилось еще около 10 лет, чтобы она стала реальностью. На пороге создания радиосвязи были многие ученые, но только единицы завершили начатые исследования.
Очень близко подошел к этой проблеме американский изобретатель Элиху Томсон (Elihu Tomson). Э. Томсон получил 693 патента. В среднем он получал 1 патент в месяц. Это второй результат по количеству патентов после Т. Эдисона, у которого 1093 патента. Заняться экспериментами в области радиосвязи Э. Томсона подтолкнула статья другого американского изобретателя Т. Эдисона. Проводя эксперименты с большим электромагнитом, Т. Эдисон увидел небольшие искорки, которые проскакивают между металлическими предметами в комнате. В 1875 г. он установил, что искорки не влияют на электроскоп с золотыми листочками. Немедленно он опубликовал статью об открытой им "эфирной силе", считая искорки не электрического происхождения. Статья попала на глаза Э. Томсону и заставила его вспомнить проведенные им опыты с катушкой Румкорфа в 1871 г. Элиху решил повторить свои прежние опыты. Включив катушку Румкорфа, он стал носить её по комнатам дома и увидел, что в любой точке помещения между остриями вспыхитвают искорки. Помощник Э. Томсона по эксперименту обнаружил, что искорки вспыхивают на различных этажах дома.
Так было доказано, что электромагнитные волны передаются через пространство. После этого Э. Томсон сделал установку с резонаторами, которая позволяла установить волновую природу электромагнитных волн, создаваемых разрядником. Доказав неправомерность утверждений об "эфирной силе", Э. Томсон этим и удовлетворился. Э. Томсон может быть рекордсменом по упущенным великим изобретениям. Так, он не довел дело до конца с телефоном, системой трехфазного тока, использованием гибких прозрачных пленок в фотографии. Но наибольший его просчет - радиосвязь.
Через 17 лет немецкий физик Генрих Герц сделал мировое открытие, экспериментально доказал наличие электромагнитных волн в пространстве. Он ограничился научным результатом открытия и не сделал шагов к практическому его использованию. В итоге, за него это сделали другие.
История "беспроволочного телеграфа" сохранила еще одно имя. Вокруг имени этого человека шли различные разговоры, которые были рождены больше таинственностью и необычностью его занятий. Еще бы, ученый, кроме всего прочего, лечил людей с помощью телефона. Имел 27-метровую антенну, на которую принимал сигналы, предвещающие грозу. А 12 февраля 1891 г. за 4 года до изобретения А. С. Попова, демонстрировал "телеграф без проводов" на заседании физического отделения Русского физико-химического общества при Петербургском университете. Об этом заседании имеется запись в протоколах общества. Сообщается "о звучании в изолированных телефонах и полном успехе демонстрировавшихся опытах". Это был Яков Оттович Наркевич-Едко. Белорусс по национальности, достаточно известный ученый в тот период времени. Любопытно, что приоритет в проведенных исследованиях Я. О. Наркевича зафиксирован и в протоколах заседаний Французского физического общества в Париже. Больше информации об опытах этого ученого не появлялось, а вспомнили мы о нем, как о человеке, прикоснувшемся к великой проблеме - "телеграф без проводов".
В истории создания "телеграфа без проводов" нельзя не вспомнить крупного сербского изобретателя Николу Тесла. Его изобретения способствовали возникновению радиосвязи, среди них есть источник высокочастотных токов, антенна, резонансные контурные катушки индуктивности, устройства для тушения искры в разряднике. Удивительно, но в этом ряду не нашлось места для когерера. Н. Тесла так и не ввел его в свои схемные решения. И, как итог не создал радиосвязь, а только способствовал её появлению. Он верил в появление "телеграфа без проводов" и высказывал фантастические идеи для конца 19 века: "После того как осуществят сигнализацию с любой точки на любую другую точку Земного шара, следующим шагом будет посылка сигналов к другим планетам". Это было сказано летом 1894 г.
Ближе всех к решению данной проблемы подошел английский ученый Оливер Лодж член Лондонского королевского общества. О. Лодж ввел название "когерер" прообраза современного детектора, и именно его обобщающая лекция памяти Г. Герца оказала большое влияние на исследования А. С. Попова. Невзирая на значительные научные результаты в области "телеграфа без проводов", О. Лоджу не суждено было воплотить их в практически пригодную систему передачи информации с помощью электромагнитных волн. Его исследования остались в рамках научной лаборатории.
Существуют два типа творцов, которые в равной мере необходимы для развития науки. Первый характеризуется чисто исследовательской направленностью работы как теоретической, так и экспериментальной. Второй - инженерный, изобретательский. Экспериментальное открытие и изучение электромагнитных волн есть чисто научное открытие. Г. Герц так писал о своем научном выборе: "Раньше я часто говорил себе, что мне больше хотелось бы быть великим учёным, чем крупным инженером...". Деятельность второго типа творцов направлена на извлечение практической пользы из открытий, сделанных в той или другой области. В истории науки и техники эти два типа творцов обычно разделены. Немецкий физик-химик Вильгельм Освальд отмечал, что величайший Т. Эдисон, поставив более опытов, чем кто-либо другой, и тем не менее не сделал ни одного научного открытия. Великий изобретатель подчеркивал, что его область только изобретательство, но не наука.
Довольно редко творец совмещает в одном лице исследователя и изобретателя. В конце 19 века таким оказался русский ученый Александр Степанович Попов. Ему было суждено пройти путь от открытия к изобретению, а никому другому. Это судьба. 27 апреля (7 мая по новому стилю) 1895 г. на очередном заседании Русского физико-химического общества А. С. Попов сделал доклад на тему: "Об отношении металлических порошков к электрическим колебаниям". На заседании учёный продемонстрировал первую практически пригодную систему радиосвязи. Система радиосвязи состояла из оригинальной конструкции радиоприёмника и радиопередатчика. Для передачи информации его ассистент П. Н. Рыбкин включал передатчик, который посылал сигнал в виде радиоволн. Радиоволны улавливались антенной радиоприемника, в котором на выходе был включен звонок. Этот звонок свидетельствовал о приеме радиоволн, т. е. переход от научных исследований к практическому их воплощению.
День исторического доклада А. С. Попова фактически является днем рождения радио в широком смысле слова. В 1945 г. в ознаменовании 50-летия со дня изобретения радио, правительство СССР приняло постановление об увековечении памяти А. С. Попова. С тех пор день 7 мая ежегодно отмечается как День радио. В том же году, 2 мая, Академия наук СССР утвердила Золотую медаль имени А. С. Попова за выдающиеся научные работы и изобретения в области радио. Медаль явилась первой научной наградой академии. Присуждается она 7 мая один раз в три года отечественному и зарубежному ученому. Свое изобретение русский ученый не запатентовал, а ограничился лишь научной публикацией в начале 1896 г. в "Журнале Русского физико-химического общества". А. С. Попов, будучи ученым с большой буквы, по существу подарил человечеству свое изобретение. Французский ученый Э. Бранли 16 декабря 1889 г. на заседании Французского физического общества так отозвался об исследованиях А. С. Попова: "Телеграфия без проводов вытекает в действительности из опытов г-на Попова. Русский учёный усовершенствовал опыт, который я часто осуществлял и который я воспроизвел в 1891 г. перед обществом электриков...".
Этот шаг А. С. Попова, с одной стороны, дал большой толчок в исследовании по "беспроволочному телеграфу", а с другой є показал, что так делать нельзя. Как в повседневной жизни, так и в науке идет постоянное соперничество между учеными за приоритет в научных исследованиях, и не всегда это происходит корректно.
В дальнейшем А. С. Попов извлек из этого урок, и на следующее свое крупное изобретение, детекторный приемник с наушниками получил российский патент o 6066 в ноябре 1901 г. Детекторный приёмник с наушниками был долгое время самым распространенным приемником благодаря его простоте и дешевизне. Популярности этого приёмника могли бы позавидовать современные приёмники. Так, интересно, в конце 20-х годов в Москве была джазовая тусовка, люди делали детекторные приёмники, слушали прямые трансляции концертов из Лондона, по памяти записывали ноты, потом встречались и сличали записи. Последующие изобретения Г. Маркони, Д. Флеминга, Ли де Фореста и других сделали приёмник неотъемлимой частью нашего бытия. Заслуженная артистка РФ Аида Чернова вспоминала: " Я помню летние сумерки. Из открытого окна в комнату вливается запах жасмина и левкоев. Мы с мамой и сестричкой сидим тихо-тихо напротив радиоприёмника. Свершается волшебное таинство - живое существо с зеленым "глазком" начинает говорить...". Радиоприёмник - мир прекрасного для человека.
Современный радиоприёмник, мало, чем напоминает своего прадеда, созданного 100 лет назад, но объединяет их одно, наличие детектора (когерера) или диода. Современный когерер выполняет те же функции, что и впору своей юности. Нынешний приёмник позволяет "прогулки по волнам эфира" не менее увлекательные, чем по морям или океанским просторам. Вытесняется шкала с верньерным устройством, и ей приходит на смену жидкокристаллический дисплей, фиксированные настройки заменяются памятью. Современный приёмник может принять со спутника Земли метеотелеметрию и распечатать карту погоды с помощью встроенного принтера. Для этого к приёмнику подключают параболическую антенну, которая улавливает сигналы со спутников. Появились приёмники в виде кредитной карточки, толщиной менее 2 мм, они принимают УКВ станции. Выпускать эти приёмники начала японская фирма "Касио". Появилось цифровое радиовещание. В его основе лежит следующее. Электрическое напряжение, которое соответствует звуковой информации и является аналоговым непрерывно меняющимся сигналом, заменяется определенным набором импульсов, которые представляют собой цифровой код. Основное преимущество такой системы: преобразование цифровых сигналов происходит без накопления шумов или искажений. Приёмник цифровой системы радиовещания напоминает современные электронные часы и просто сочетается с микропроцессором, который активно управляет выбором и приёмом передач, дает возможность записывать желаемую. Цифровая система позволяет в эфирный сигнал ввести опознавательный импульс
передач, и приёмник по желанию владельца найдет не только конкретную радиостанцию, но и требуемую передачу, новости, спорт или для детей. Приёмник содержит блок повтора, передачу можно прослушивать с минутной задержкой - "ретроспективно".
Великое изобретение русского ученого Александра Степановича Попова - система радиосвязи и её составляющая радиоприёмник, живут и совершенствуются уже 100 лет, принося нам много удивительного.
Информация взята из сайта http://www.qrz.ru