Цены и наличие товара Вы можете уточнить здесь

Icom IC-A210/210E >>
Icom IC-A110 >>
Icom IC-A200 >>

Icom IC-A210/210E

 

Радиостанция ICOM IC-A210

Компания Icom продолжает планомерную смену модельного ряда авиационных радиостанций. На смену проверенной временем модели IC-A200 с 2008 года компания выпустила новую радиостанцю IC-A210.

  • Большой светодиодный дисплей с высоким уровнем яркости.
    Радиостанция IC-A210 снабжена большим дисплеем на основе органических светодиодных индикаторов (OLED). Дисплей на основе OLED обладает существенными преимуществами по яркости, четкости, контрастности изображения, а также углу обзора и времени отклика. Кроме того, радиостанция имеет функцию автоматического затемнения, которая определяет оптимальный уровень яркости для дневного или ночного режимов.
  • Простота установки канала.
    Двухконтактная кнопка со стрелками легко осуществляет переключение между основным и резервным рабочим каналом. Функция двойного приема позволяет вести прием в двух каналах одновременно. Кроме того, функция автоматического стека позволяет хранить в памяти 10 последних использованных каналов и при необходимости мгновенно устанавливать их.
  • Функция GPS памяти
    При подключении внешнего GPS приемника, снабженного базой рабочих частот аэропортов, необходимая рабочая частота для связи с аэропортом может быть передана для настройки радиостанции IC-A210.
  • Источник питания 12V/24V DC
    Встроенный DC преобразователь напряжений позволяет использовать различные источники питания от 11.5 до 27.5 Вольт.
  • Функции селекторной связи
    Радиостанция IC-A210 снабжена функцией селекторной связи с голосовой активацией. Таким образом, у командира корабля имеется возможность разговора со вторым пилотом через гарнитуру (поставляется отдельно).
  • Простота установки
    Радиостанция IC-A210 может быть установлена в кабине пилота с помощью стандартных монтажных скоб, которые использовались с радиостанциями серии IC-A200. В комплекте с радиостанцией поставляются два типа адаптеров задней панели для упрощенного подключения.
  • Совместима по аксессуарам с IC-A200
    Дополнительный комплект MB-53 - для установки радиостанции в автомобиле, включает в себя громкоговоритель и микрофон
    Дополнительный комплект PS-80 для стационарной установки радиостанции. PS-80 включает в себя блок питания с посадочным местом под радиостанцию, громкоговоритель и микрофон.
  • Разработана и собрана в Японии.
  • Прочие функции и особенности:
    10 обычных каналов памяти с наименованием длиной до 6 символов.
    200 сгруппированных каналов памяти (6 банков по 20 каналов) с наименованиями.
    Прием сообщений метеослужбы NOAA.
    Установка аварийной частоты 121.5 мГц нажатием единственной кнопки.
    Функция самоконтроля излучаемого сигнала в головных телефонах.
    Функция ANL (автоматического ограничения шумов) для подавления помех импульсного типа.
    Возможность дистанционного управления.
    Сканирование VFO.
    Блокировка ручки настройки и органов управления передней панели Функция проверки шумоподавления.
    Программирование настроек с персонального компьютера.
  • 3 шага перестройки частоты. Радиостанция имеет две концентрические ручки настройки. Малая (внутренняя) ручка обеспечивает настройку с шагом 50кГц, выдвижением ручки выбирается шаг 25кГц. Большая (внешняя) ручка обеспечивает настройку с шагом 1мгц.
  • Дистанционное управление. Основные операции (переключатель эфир/интерком, выбор канала памяти, обмен частот и т.д.) могут осуществляться с помощью вынесенных переключателей.
  • Функция интеркома. При наличии на борту проводки радиостанция обеспечивает внутреннюю связь между членами экипажа.

    Технические характеристики IC-А210
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 8 (Carrier power)
    Количество каналов 240
    Диапазон рабочих температур -20...+55 .С
    Шаг сетки частот, кГц 25.0
    Габариты и вес 160х34х271 мм,
    1000 г
    Чувствительность (6 дБ SINAD), мкВ 2.0

    вверх Сравнение радиостанций >>

    Icom IC-A110


    Радиостанция ICOM IC-A110
    Надежная конструкция. Радиостанция выполнена в унифицированном (для профессиональных мобильных радиостанций ICOM) литом алюминиевом корпусе, служащим одновременно радиатором, и позволившему повысить номинальную пиковую мощность передатчика до 36 Вт.

    Удобство и доступность в эксплуатации. В 20 ячейках памяти каналов стало возможным хранить русскоязычные (до 7 символов) наименования. Управление радиостанцией максимально упрощено (7 стандартных кнопок управления и удобный регулятор пошаговой настройки частоты).

    Новые возможности. ICOM IC-A110 перекрывает весь авиационный диапазон 118...137 МГц, что при шаге 8.33 кГц позволяет вести работу в любом из 2280 каналов связи. Радиостанция имеет встроенный конвертор напряжения 27.5 / 13.8 В, позволяющий подключение практически ко всем стандартным бортовым сетям.

    Проспект на английском языке PDF (257Кб) Icom IC-A110

    Технические характеристики IC-А110
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 36
    Количество каналов 20
    Диапазон рабочих температур -30...+60 .С
    Шаг сетки частот, кГц 25.0 или 8.33
    Габариты и вес 150х50х180 мм,
    1500 г
    Чувствительность (6 дБ SINAD), мкВ 1.0

    вверх Сравнение радиостанций >>


    Icom IC-A200


    Радиостанция ICOM IC-A200
    Cертифицирована в Госстандарте Украины.
    Простота в эксплуатации. Минимальное количество переключателей и кнопок, автоматический шумоподавитель уменьшают возможность ошибок в управлении радиостанцией даже в экстренных ситуациях.

    Надежная конструкция. Прочный алюминиевый каркас и передняя панель из ударопрочного пластика выдерживают все механические и климатические воздействия в условиях полета.

    Стабильная работа при выходной мощности до 25Вт. Цельный алюминиевый корпус, служащий радиатором, не позволяет радиостанции перегреваться даже при длительных периодах передачи.

    Подсвечиваемые передняя панель и функциональный дисплей. Вся информация о каналах и режимах работы отображается на большом ЖК-дисплее. Постоянно выводятся частоты рабочего (USE) и дежурного (STBY) канала связи. Подсветка дисплея и ручек управления изменяется вместе с приборной панелью пилота.

    Полный частотный диапазон. ICOM IC-A200 перекрывает весь авиационный диапазон 118...137МГц, что при шаге 25кГц соответствует 760 каналам связи.

    Функция защиты памяти. Содержимое выбранных каналов памяти может быть защищено от изменений (программируется Дилером).

    9 каналов памяти.

    2 способа установки частоты:

    - прямой выбор частоты в окне USE;
    - выбор частоты в окне STBY и обмен с окном USE нажатием кнопки .

    Комплект PS-80 для стационарной установки радиостанции Icom IC-A200
    3 шага перестройки частоты. Радиостанция имеет две концентрические ручки настройки. Малая (внутренняя) ручка обеспечивает настройку с шагом 50кГц, выдвижением ручки выбирается шаг 25кГц. Большая (внешняя) ручка обеспечивает настройку с шагом 1мгц.

    Дистанционное управление. Основные операции (переключатель эфир/интерком, выбор канала памяти, обмен частот и т.д.) могут осуществляться с помощью вынесенных переключателей.

    Функция интеркома. При наличии на борту проводки радиостанция обеспечивает внутреннюю связь между членами экипажа.

    MB-53 - комплект для установки радиостанции в автомобиле, включает в себя громкоговоритель и микрофон

    Предусмотрен комплект для стационарной установки радиостанции. PS-80 включает в себя блок питания с посадочным местом под радиостанцию, громкоговоритель и микрофон.

    Технические характеристики IC-А200
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 25
    Количество каналов 9
    Диапазон рабочих температур -20...+55 .С
    Шаг сетки частот, кГц 25.0
    Габариты и вес 160х34х271 мм,
    1100 г
    Чувствительность (6 дБ SINAD), мкВ 2.0

    вверх Сравнение радиостанций >>
Однокристальная система для мобильных устройств связи (ISD5008)

В данной публикации речь пойдет о ChipCorder фирмы Integrated Storage Devices (ISD) — подразделения Winbond Electronics. Микросхема ISD5008 предназначена для использования в мобильных средствах связи и служит для согласования аналоговых сигналов звукового диапазона. В микросхеме предусмотрена прямая связь с элементами акустического преобразователя и обеспечивается преобразование сигнала при регулировке, мультиплексировании, фильтрации и смешении двух независимых сигналов. Система обеспечивает запись этих обработанных аналоговых сигналов в энергонезависимое флэш-ППЗУ для последующего использования. Управление ISD5008 осуществляется через последовательный интерфейс, который используется для конфигурирования и управления устройством. Как сама система, так и все необходимые ее компоненты реализованы непосредственно на кристалле, включая элементы аналоговой обработки, энергонезависимую память, схемы формирования высокого напряжения и опорный генератор.

В любом мобильном устройстве связи, например в сотовом телефоне (рис. 1), обязательной является возможность обработки двух потоков информации: исходящего (от пользователя к удаленному абоненту) и входящего (от удаленного абонента к пользователю). Помимо этого, в системе мобильной связи желательна реализация таких функций, как полнодуплексная запись и воспроизведение голоса, авто- ответчик и отображение номера абонента. Важнейшим фактором, определяющим качество устройства связи, служит минимальное число внешних элементов и низкое энергопотребление. В данной статье описывается однокристальная система для обработки и хранения речевых сигналов, в которых реализованы все вышеупомянутые функции. Установленная между базовым модулем сотового телефона и акустическим преобразователем (динамик, микрофон), эта микросхема обеспечивает обработку нескольких аналоговых сигналов, значительно улучшая интеграцию на системном уровне.

Рис. 1. Системная конфигурация мобильного устройства связи

Предпосылки разработки

В существующих системах записи и воспроизведения речи [1–3] сигналы записываются с постоянной частотой выборки, что приводит к постоянному времени обработки. Ограниченный набор функций интерфейса, только один входной и один выходной каналы, отсутствие обработки сигнала — таковы возможности этих приборов. В результате для создания интерфейса мобильного устройства связи требуются дополнительные внешние элементы, что в итоге приводит как к увеличению потребляемой мощности, так и к росту стоимости всего устройства. В микросхеме ISD5008 все необходимые внешние элементы интегрированы на кристалле. Таким образом, она отличается от существующих приборов тем, что имеет следующие характеристики:

  • несколько цепей передачи сигнала от входа к выходу, конфигурируемых пользователем;
  • схему АРУ сигнала микрофона и усилитель для динамика, что позволяет напрямую подключаться к акустическим элементам;
  • схемы регулировки громкости и фильтрации;
  • аналоговый вход с регулируемым коэффициентом передачи;
  • дополнительные вход и выход, обеспечивающие подключение внешних устройств (например, в автомобиле);
  • дополнительные возможности конфигурируемого суммирующего усилителя, позволяющие записывать и воспроизводить сигналы обеих сторон при разговоре;
  • многоуровневую энергонезависимую память с одним миллионом циклов записи/чтения и хранением данных в течение 100 лет;
  • задаваемую пользователем продолжительность записи. Архитектура системы

    Функционально микросхема разделена на три части. Верхняя секция состоит из схемы формирования высокого напряжения, необходимого для программирования флэш-памяти, цифровой логики для интерфейса SPI (последовательный периферийный интерфейс), схемы управления и схемы задающего генератора. Средняя секция содержит матрицу памяти, драйверы столбцов и декодеры строк. В состав драйверов столбцов входят устройства выборки/хранения (УВХ) вместе с аналоговыми компараторами для реализации алгоритма хранения аналоговых сигналов в энергонезависимой памяти. В нижней части находятся аналоговые цепи и соответствующие схемы обработки аналоговых сигналов, а также схемы формирования опорных сигналов. Для снижения уровня помех питание подается по трем отдельным шинам: шине схем формирования высокого напряжения, шине цифровой логики и шине аналоговой секции. ISD5008 работает при напряжении питания 3 В и содержит программируемую схему управления питанием, что позволяет минимизировать потребление во всех режимах. Организация памяти

    Базовым элементом матрицы памяти (в дальнейшем — памяти) является элемент размером 0,6 мкм (рис. 2), выполненный по технологии SSI (двойная поликристаллическая инжекция). Флэш-элементы организованы в виде матрицы (рис. 3) линии битов/линии слов и линий общего истока, которые доступны через соответствующие строки. Каждый такой элемент памяти состоит из транзистора выбранного затвора (SG) и транзистора плавающего затвора (FG), соединенных в конфигурацию с разделенными затворами. Таким образом, элемент памяти имеет три вывода: общий исток (CS), доступный со стороны FG-транзистора; сток, доступ к которому возможен через SG-транзистор; выбранный затвор. Сама матрица памяти организована как архитектура ИЛИ-НЕ, где выбранные затворы формируют линии слов, а стоки, связанные первой металлизацией, — линии битов. Линии общих истоков, параллельные линиям слов, связаны вторым слоем металлизации. Напряжение программирования подается на плавающий затвор через диффузию общего истока на перекрытие FG. Горячие носители заряда из тока канала активируют ударную ионизацию на истоке FG-транзистора, обеспечивая тем самым эффективность программирования элемента матрицы.

    Рис. 2. Поперечное сечение элемента памятиРис. 3. Организация матрицы памяти


    Алгоритм и параметры программирования Алгоритм записи

    Для записи аналогового сигнала из устройства выборки/хранения в ячейку памяти используется специальный алгоритм записи. Этот алгоритм основан на программе итераций замкнутого цикла и цикле проверки. Вначале выполняется очистка элемента памяти, после чего на общий исток подается последовательность импульсов (рис. 4, а). Столбец выбирается уменьшением соответствующего тока программирования с линии битов (рис. 4, b). После каждого импульса программирования содержимое элементов памяти считывается и сравнивается с соответствующим значением из УВХ. При достижении требуемого значения падение тока линии бита прекращается, исключая тем самым дальнейшее программирование элемента памяти.

    Рис. 4. Схема многоуровневого аналогового программирования

    Реализация

    Специфическая реализация данного алгоритма повторяющихся циклов для SSI флэш-элемента представлена на рис. 5. Для каждого цикла программирования напряжение выбранного затвора (SG) устанавливается на уровне Vsg, ток программирования линии битов задается на уровне Ip источником тока. На линию общего истока (CS) подаются импульсы напряжения программирования Vpg, равного Vcs. Во время каждого импульса программирования время программирования tp управляется ключом заданного истока. Импульсы программирования подаются с нарастанием амплитуды от 6 до 12 В с шагом DVpg. Процесс программирования прекращается при достижении значения Vsf. После каждого импульса программирования происходит считывание значения Vsf в элементе (табл. 1). В табл. 2 приведены параметры для работы с элементами памяти. Во время чтения напряжение Vsf истокового повторителя линии битов определяется как заряд плавающего затвора. Данный метод эффективен при измерении отрицательного напряжения на элементе памяти Vt, то есть Vsf ~ -Vt. На рис. 6 и 7 показана зависимость Vsf от Vsg и Vcs соответственно. Таблица 1. Параметры алгоритма программирования

    Наименование параметраЗначение
    Напряжение стирания, Verase, В15
    Напряжение программирования (низкий уровень), Vprog_LOW, В6
    Напряжение программирования (высокий уровень), Vprog_HI, В12
    Ток программирования, Iprog, мкА0,5
    Шаг программирования, Vstep, мВ16
    Число импульсов380
    Таблица 2. Параметры режимов работы с памятью
    ПараметрРежим работы
    СтираниеПрограммированиеЧтение
    Ток линии битов, Ip или Id, мкА--1-1
    Напряжение общего истока, Vcs, В06-122,2
    Напряжение выбранного затвора, Vsg, В~152,34,2
    Напряжение линии битов, Vsf, мкАПлавающее~0,8Измерение

    Рис. 5. Процесс программирования и сравнения при записи сигнала в элемент памяти

    Рис. 6. Зависимость напряжения
    истокового повторителя
    от напряжения на выбранном затворе
    Рис. 7. Зависимость напряжения
    истокового повторителя
    от напряжения на общем истоке


    Схемы выборки и записи

    После того как сигнал был занесен в УВХ, выполняется параллельное занесение выборок в ячейки памяти. Для этого в системе реализовано несколько схем УВХ, в результате чего время выборки становится значительно меньше времени программирования элементов памяти. Выборки будут храниться и использоваться схемой записи. Схема УВХ представлена на рис. 8.

    Рис. 8. Схема устройства выборки/хранения Эта схема может быть подключена к операционному усилителю с единичным коэффициентом усиления (OP Amp), который является общим для всех УВХ. Подключение заданного УВХ выполняется по сигналу выбора «select». Когда схема УВХ отключена, выборка аналогового входного сигнала может быть восстановлена из истокового узла «собственного» n–МОП-транзистора. Это напряжение будет затем использовано для программирования элемента памяти. По сигналу «bank select» (выбор банка) производится подключение одного из двух банков схем УВХ: А или В. Во время программирования выборок может выполняться загрузка выборок из одного банка в другой. Таким образом, программирование матрицы памяти представляет собой непрерывный процесс. При программировании выбор узла общего истока и узла вентиля выполняется декодером «Xdecoder». Формирователь «Waveshaper» и высоковольтный драйвер «Driver» формируют сигнал, как показано на рис. 10.

    Рис. 10. Архитектура блока хранения данных Этот сигнал подается на выбранный узел общего истока. Во время каждого цикла программирования высоковольтный (HV) импульс поступает на узел общего истока, в то время как ток программирования протекает через выбранную линию битов. Эта линия битов выбирается мультиплексором столбцов (MULTIPLEXER). После подачи высоковольтного импульса напряжение на истоковом повторителе Vsf считывается и сравнивается с напряжением выборки. Если Vsf меньше или равно напряжению выборки, то регистр-защелка будет сброшен. Это приведет к тому, что выбранная линия битов будет привязана к напряжению запрета Vxx, что в свою очередь приведет к остановке процесса программирования. На кристалле создано несколько схем УВХ с компаратором и мультиплексором столбцов, что позволяет программировать несколько элементов параллельно. Формирование и подача высокого напряжения

    Для понимания формирования и подачи высокого напряжения рассмотрим упрощенную блок-схему (рис. 11). Импульсы стирания и итерационного программирования генерируются через блок CDAC (см. рис. 4, а) который представляет собой цифро-аналоговый преобразователь. CDAC формирует импульсы от 6 до 12 В с шагом 16 мВ с помощью 10-разрядного счетчика (HVINC). Эти импульсы поступают на общий исток ячейки памяти. Во время чтения и программирования используются два отдельных операционных усилителя. Напряжение, поданное на линию общего истока, нечувствительно к броскам питания, что позволяет устранить «провал» при переключении декодера. Затем импульсы напряжения проходят через предекодер (XRED) и декодер (XDEC), в результате чего поступают на те ячейки памяти, которые должны быть запрограммированы.

    Рис. 11. Упрощенная блок-схема формирования и подачи высокого напряжения