ПОРТАТИВНЫЕ РАДИОСТАНЦИИ
Радиостанции цифровые (D-STAR) Icom IC-T81
Icom IC-80AD/IC-E80D Icom IC-T90/E90
Icom IC-92AD/IC-E92D
Icom IC-V82/U82
Радиостанции аналоговые
Kenwood TH-D7
Icom IC-E7
Kenwood TH-F7E
Icom IC-T3H (IC-V8)
Icom IC-Q7
 

Радиостанции протокола D-STAR

D-STAR (Цифровой Smart Technologies for Amateur Radio) — радиолюбительский цифровой радио протокол передачи речи и данных, разработанный Японской радиолюбительской Лигой (JARL) с целью развития цифровых технологий радиолюбителями. В то время как существуют и другие радио цифровые технологии используемые радиолюбителями на практике, D-STAR является одним из первых радиопакетных стандартов, который предлагается широко использовать и продавать основными производителями радио оборудования для использования в радиолюбительских сервисах.

Первым производителем, предлагающим оборудование D-STAR была компания ICOM. По состоянию на 30 декабря 2008, некоторые другие производители радиолюбительского оборудования решили также включить элементы D-STAR технологии в выпускаемую ими аппаратуру связи. Так компания Kenwood выпустила несколько ребрендинговых моделей трансиверов ICOM под своей торговой маркой и продавала эти трансиверы только в Японии.

Другие не цифровые виды модуляций для передачи речи, такие как — амплитудная (AM), частотная (FM), однополосная (SSB) стали широко использоваться начиная с первой половины двадцатого века. Для сравнения, цифровой сигнал D-STAR обеспечивает высокое качество сигнала при существенно меньшей занимаемой полосе спектра по сравнения с не цифровыми аналогами. Если уровень сигнала выше минимального порога, и отсутствует многолучевое распространение, то качество принятого сигнала будет выше, чем аналогового сигнала той же мощности.

D-STAR совместимые трансиверы могут работать в VHF (144 Mhz), UHF (430 МГц), и SHF (1200 Mhz) радиолюбительских диапазонах. В дополнение к работе цифровым протоколом в эфире, D-STAR также предоставляет радиолюбителям возможность работы в сети, что позволяет D-STAR трансиверам выходить в Интернет и другие радиолюбительские сети для маршрутизации потоковых, голосовых и пакетных данных с использованием радиолюбительских позывных.


Icom IC-80AD/ IC-E80D

 

Радиостанция Icom IC-802AD/ IC-E80D


Любительская носимая радиостанция ICOM IC-80AD/ IC-E80D протокола D-STAR

Малогабаритная радиостанция Icom IC-802AD/ IC-E80D с выходной мощностью 5 Вт и возможностью работы в цифровом режиме – все, что необходимо для обеспечения качественной связи и удобной работы абонента.

Широкий рабочий диапазон частот, а также полный набор функциональных возможностей удовлетворит любым требованиям, предъявляемым к любительской носимой радиостанции. Имеет широкополосный приемник (495 кГц≈1 ГГц) AM, FM, WFM.

Многофункциональность. Незаменимое средство связи для радиолюбителей. Широкий рабочий диапазон частот, а также полный набор функциональных возможностей удовлетворит любым требованиям, предъявляемым к любительской носимой радиостанции.

Простота эксплуатации Icom IC-80AD/ IC-E80D обеспечивается за счет управления многофункциональной клавиатурой на передней панели, что наряду с информационным подсвечиваемым ЖК-дисплеем делает работу пользователя рации Icom IC-80AD/ IC-E80D наиболее комфортной, эргономичного дизайна.

Надежность конструкции. Литое алюминиевое шасси, корпус из ударопрочного пластика.

Программируемая мощность. Выходная мощность 5 Вт в диапазонах 144 МГц и 430 МГц. Для экономии заряда аккумулятора можно установить выходную мощность 2,5; 0,5; 0,1Вт.

Сканирование. Расширенные возможности динамического сканирования каналов памяти, заданного участка диапазона частот или всего диапазона целиком.

Технические характеристики Icom IC-80AD/IC-E80D
Диапазон частот, МГц Tx: 144 - 146, 430 - 440
Rx: 0,495 - 999.990
Выходная мощность, Вт 5; 2,5; 0,5; 0,1 (программируется)
Количество каналов памяти 1052 (включая 50 границ сканирования + 2 вызывных канала)
Диапазон рабочих температур°C -20...+60 .С
Питание 7,4 В, 1,8/2,1А (VNF/UHF max при 5Вт)
Чувствительность (12 дБ SINAD), мкВ FM 0,16-0,56; WFM 1,0 – 2,5; AM 0,5 – 1,3; DV 0,22
Тип антенного разъема SMA
Габариты и вес 58,4х103х34,2 мм, 290 г (c антенной и АКБ BP-217 7,4 В/1580 мА/ч)

 




Icom IC-92AD/ IC-E92D


Радиостанция Icom IC-92AD/ IC-E92D

Любительская носимая радиостанция ICOM IC-92AD/ IC-E92D протокола D-STAR

Новейшая разработка, малогабаритная радиостанция Icom IC-92AD/ IC-E92D с выходной мощностью 5 Вт и возможностью работы в цифровом режиме – все, что необходимо для обеспечения качественной связи и удобной работы абонента.

Широкий рабочий диапазон частот, а также полный набор функциональных возможностей удовлетворит любым требованиям, предъявляемым к любительской носимой радиостанции. Имеет широкополосный приемник (495 кГц≈1 ГГц) AM, FM, WFM.

Многофункциональность. Незаменимое средство связи для радиолюбителей. Широкий рабочий диапазон частот, а также полный набор функциональных возможностей удовлетворит любым требованиям, предъявляемым к любительской носимой радиостанции.

Простота эксплуатации Icom IC-92AD/ IC-E92D обеспечивается за счет управления многофункциональной клавиатурой на передней панели, что наряду с информационным подсвечиваемым ЖК-дисплеем делает работу пользователя рации Icom IC-92AD/ IC-E92D наиболее комфортной, эргономичного дизайна.

Надежность конструкции. Литое алюминиевое шасси, водонепроницаемый корпус эквивалентной защиты IPX7 (1 м глубины под водой в течение 30 минут) из ударопрочного пластика.

Программируемая мощность. Выходная мощность 5 Вт в диапазонах 144 МГц и 430 МГц. Для экономии заряда аккумулятора можно установить выходную мощность 2,5; 0,5; 0,1Вт.

Сканирование. Расширенные возможности динамического сканирования каналов памяти, заданного участка диапазона частот или всего диапазона целиком.

Технические характеристики Icom IC-92AD/IC-92D
Диапазон частот, МГц Tx: 144 - 146, 430 - 440
Rx: 0,495 - 999.990
Выходная мощность, Вт 5; 2,5; 0,5; 0,1 (программируется)
Количество каналов памяти 1304 (включая 100 границ сканирования + 4 вызывных канала)
Диапазон рабочих температур°C -20...+60 .С
Питание 7,4 В, 1,8/2,1А (VNF/UHF max при 5Вт)
Чувствительность (12 дБ SINAD), мкВ FM 0,18-0,56; WFM 1,0 – 2,5; AM 0,5 – 1,0; DV 0,22
Тип антенного разъема SMA
Габариты и вес 59х112х34,2 мм, 325 г (c антенной и АКБ BP-256 7,4 В/1620 мА/ч)



 

 
Радиостанции аналоговые


Icom IC-E7


Радиостанция Icom IC-E7

Миниатюрная любительская носимая радиостанция ICOM IC-E7

Радиостанция сочетает в себе легкость, компактность, небольшие размеры, высокую функциональность и простоту в управлении. Передатчик имеет мощность 1,5/1,0 Вт в диапазоне УКВ/ДЦВ – от 144 до 146 МГц и от 430 до 440 МГц с модуляцией FM, а широкополосный приемник работает в диапазоне от 495 кГц до 999,990 МГц с модуляцией AM, FM, WFM.

Управление всеми функциями радиостанции осуществляется через 7 подсвечиваемых кнопок, что наряду с подсвечиваемым информационным ЖК-дисплеем делает работу пользователя наиболее комфортной, даже в ночных условиях.


В радиостанции общий объем памяти - 1252 каналов. Имеется нескольких типов сканирования каналов памяти: сканирование заданного участка диапазона частот или всего диапазона целиком, сканирование по частоте тона. Возможна автоматическая запись обнаруженных занятых каналов в память. Можно установить световую сигнализацию при обнаружении занятого канала и звуковую сигнализацию при обнаружении станций на приеме заранее определенного тонального сигнала.

Функция автоматического сохранения энергии и выключения питания позволяет увеличить время работы радиостанции без дополнительной подзарядки аккумуляторов. Наличие разъема для подключения внешних устройств позволяет использовать широкий выбор коммуникаторов, головных гарнитур и гарнитур скрытого ношения.

Радиостанция поставляется в комплекте с быстрым зарядным устройством ВС-164 и с Li-Ion аккумулятором 3,7В/1800 мАч. Время работы радиостанция составляет не менее 15 часов непрерывного приема или около 20 часов при соотношении режимов передача:прием:ожидание 5:5:90.


Сигналинг. Для идентификации абонентов и организации групповых коммуникаций радиостанции имеют встроенные CTCSS (тональный шумоподавитель) и DTCS (кодовый шумоподавитель).

Технические характеристики IC-E7
Диапазон частот, МГц Tx: 144 - 146, 430 - 440
Rx: 0,495 - 999.990
Выходная мощность, Вт 1,5 (144-146) / 1,0 (430-440)
Количество каналов памяти 1252(1000 + 2 вызывных + 50 для границ сканирования + 200 для автоматической записи)
Диапазон рабочих температур -10...+60 .С
Питание 3,7В, 1,5А (max при 1,5Вт)
Чувствительность (12 дБ SINAD), мкВ FM 0,45-2,2; WFM 1,8 – 2,5; AM 1,4 – 2,2
Тип антенного разъема SMA
Габариты и вес 47х81х28 мм, 160 г (c антенной и АКБ)




Icom IC-T3H (IC-V8)


Радиостанция Icom IC-T3H (IC-V8)

Простые и удобные в работе


Жесткая конструкция,


Компактные размеры: 54 х 132 х 35 мм


Выходная мощность (переключаемая): 5.5Вт / 0.5Вт


107 каналов памяти (включая 6 границ сканирования и 1 канал вызова)


5-ти символьный буквенно-цифровой подсвечиваемый ЖК дисплей


Режимы сканирования: приоритетное, программное, сканирование памяти, сканирование с пропуском, сканирование тонов


Встроенный СTCSS и DTCS кодер/декодер


16-ти кнопочная DTMF клавиатура (декодер дополнительно)

Технические характеристики IC-V8 ( IC-T3)
Диапазон частот, МГц Tx: 144-148
Rx: 136-174
Выходная мощность, Вт 5.5 / 0.5
Количество каналов памяти 107 (включая 6 границ сканирования и 1 канал вызова)
Диапазон рабочих температур -10...+60 .С
Питание 7.2В, 2.0А (max при 5.5Вт)
Чувствительность (12 дБ SINAD), мкВ 0.16
Тип антенного разъема BNC
Габариты и вес 54х132х35 мм, 350 г




Icom IC-T81


Icom IC-T81
  • три рабочих диапазона
  • прием на УКВ-вещательном и авиационном диапазонах
  • при профессиональном использовании возможна работа на расширенных диапазонах 136 - 174 МГц, 400-500 МГц.
  • соответствует американскому военному стандарту MIL-STD 810 C/D/E
  • брызгозащищенная конструкция корпуса





Icom IC-T90/E90


Icom IC-T90/E90
  • три рабочих диапазона
  • широко диапазонный приемник
  • 555 каналов памяти
  • 5 Вт во всех диапазонах
  • Li-Ion аккумулятор 1300 мА/ч








Icom IC-V82/U82


Профессиональное качество и функциональность.
  • Простой и удобный в работе
  • Крепкая конструкция
  • Компактные размеры
  • Исходная мощность (что переключается): VHF - 7Вт, UHF - 6Вт
  • 100 каналов памяти (1 канал вызова включительно)
  • 5-символьный алфавитно-цифровой жидкокристаллический дисплей, который подсвечивается
  • Режимы сканирования: приоритетное, программное, сканирование памяти, сканирование с пропуском, сканирование тонов
  • Встроенный СТСSS и DТСs кодер/декодер
  • 16- кнопочная DTMF клавиатура (декодер дополнительно)
  • Быстрое сканирование - 40 каналов за секунду
  • Авто репитер
  • Возможность установления модулей маскиратора языка: аналоговых UT-109/110 и цифровых UТ-114/115 Аксессуары
  • AD-111 Зарядное устройство-адаптер
  • АD-98FSС Антенный адаптер
    ВС-119 Комплект: быстрый ЗП, 120хв
  • ВС-121 Шестипозиционный быстрый ЗП
  • ВР-124 Адаптер для ВР-121
    ВР-145 Адаптер для ВР-119
  • ВР-159 Настольное зарядное устройство
  • ВР-208 Батарейный отсек
  • ВР-209 Аккумулятор NiCd, 7.2V, 1100 маг
  • ВР-210 Аккумулятор NiMh, 7.2V, 1650 маг
  • ВР-211 Аккумулятор литиевый, 7.4В,
    1800 маг
  • ВР-222 Аккумулятор NiCd, 7.2V, 600 маг
  • CS-V82 Комплект для
    программирования из ПК
  • НМ-75 Выносная тангента
  • НМ-128 Гарнитура скрытого ношения
  • НМ-131 Выносная тангента
  • НS-51 Гарнитура из VОХ
  • НS-85 Гарнитура из VОХ
  • НS-94 Гарнитура с ушным зачепом
  • НS-95 Гарнитура
  • НS-57 Гарнитура из лорингофоном
  • МВ-98 Клипса
  • МВ-97 Клипса типа "крокодил"
  • ОРС-474 Кабель для клонирования
  • ОРС-478 Кабель для клонирования (RS-232)
  • ОРС-478(U) Кабель для клонирования (USB)
  • SР-13 Наушник
  • UT-108 Модуль декодера DTMF
  • UT-109 Модуль маскиратора языка (частотная
    инверсия
    32 кода)
  • UT-110 Модуль маскиратора языка
    роллингового типа с кодом, который плавает (4 группы
    по 255 кодов)
  • UT-114 Цифровой модуль маскиратора языка
  • UT-115 Цифровой модуль без маскиратора языка
  • VS-11 VОX/РТТ



Kenwood TH-D7


Kenwood TH-D7
  • два рабочих диапазона
  • прием на авиационном диапазоне
  • встроенный TNC-контроллер, работающий по протоколу AX-25 со скоростью 1200/9600
  • работа в радиолюбительской системе APRS
  • возможность совместной работы с видео коммуникатором Kenwood VC-H1 для приема и передачи SSTV-сообщений
  • возможность работы с GPS-приемником (интерфейс NMEA-0183)
  • возможность передачи в эфир информации о текущих координатах радиостанции
  • передача текстовых сообщений (до 45 символов) однотипной радиостанции
  • одновременный прием на двух частотах, в том числе и на одном диапазоне
  • большой много позиционный трехстрочный точечно матричный ЖКИ-дисплей
  • подсветка дисплея и клавиатуры
  • удобная иерархическая система меню
  • три уровня выходной мощности
  • полный дуплекс на разнесенных диапазонах
  • функция блокирования интермодуляционных помех
  • возможность дистанционного управления КВ-трансивером Kenwood
  • дистанционное управление однотипной радиостанцией с подключенным к ней видео коммуникатором Kenwood VC-H1
  • различные режимы сканирования





Kenwood TH-F7E


Kenwood TH-F7E
  • двухдиапазонный трансвер ЧМ 144\430 мГц
  • приемник 0,1 - 1300 мГц ЧМ, 998, СW, АМ
  • мелкие габариты
  • магнитная антенна для НЧ диапазона
  • возможность работы с ТНС контроллером
  • VOX
  • АТТ
  • мощность ТХ 5 Вт





 

 

 

 

 

 

 

Icom IC-Q7


Носимая радиостанция Icom IC-Q7

IC-Q7 Носимая радиостанция
150-174 Мгц / 450-470 Мгц


IC-Q7 представитель нового поколения портативных радиостанций. Главные ее особенности - огромные возможности в миниатюрном корпусе при невысокой цене.


Простота в работе. Радиостанция имеет всего пять кнопок управления, понятные символы на дисплее позволяют за несколько минут разобраться со всеми функциями.

Компактные размеры. Плоский корпус небольших размеров удобно ложится в Вашу ладонь.

5 диапазонов на прием перекрывают частоты от 30 до 1300 Мгц в режиме WFM, FM и AM.

Гибкие возможности сканирования: по всему диапазону или в запрограммированных границах; всех каналов памяти или только каналов в пределах диапазона.

И более того...
До 350 мВт выходной мощности.

Дистанционное управление с дополнительного микрофона HM-75A.

Станции работают от двух элементов питания типа АА.

Функция сохранения энергии.

Время работы до 50 часов ( цикл 5:5:90)

Знакосимвольный дисплей с подсветкой.

Разьем для подключения внешних гарнитур



Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru